
Cambio en las nuevas guías 2025 ESC / EACTS

Angel Sánchez Recalde

Hospital Universitario Ramón y Cajal

Patients central role of the Heart Team

The Heart Team meeting facilitates balanced presentation of all appropriate options

“The value of the Heart Team approach has become increasingly apparent as options for the treatment of VHD have extended to include high-risk and inoperable patients (most of whom now undergo transcatheter interventions), and low-risk and asymptomatic patients (who derive prognostic benefit from increasingly safe procedures).”¹

“The patient’s preference plays a central role in this process.”

CAD and TAVI

Omission of invasive coronary angiography should be considered in TAVI candidates, if procedural planning CT angiography is of sufficient quality to rule out significant CAD.

IIa **B**

PCI should be considered in patients with a primary indication to undergo TAVI and $\geq 90\%$ coronary artery stenosis in segments with a reference diameter ≥ 2.5 mm.

IIa **B**

Study (Journal, Year)	Design / Population	Intervention (PCI Strategy)	Main Results	Clinical Implications
ACTIVATION Trial (JACC Intv 2021)	Randomized, 235 pts with severe AS + significant CAD, planned for TAVI	Pre-TAVI PCI vs No PCI	1-yr death/rehospitalization: 41.5% (PCI) vs 44.0% (No PCI); non-inferiority not met; ↑ bleeding with PCI	Routine PCI before TAVI does not improve outcomes; UNDERPOWERED due to slow recruitment
NOTION-3 (NEJM 2024, n=455 randomized / 452 mITT)	Open-label RCT; severe AS + significant CAD (FFR ≤ 0.80 or $\geq 90\%$ stenosis)	PCI + TAVI vs TAVI alone	MACE reduced by $\approx 29\%$ at ~ 2 yrs; no excess bleeding; benefit from fewer MI and unplanned PCI	First RCT showing benefit of selective PCI in anatomically/physiologically significant CAD
REVASC-TAVI Registry (EuroIntervention 2023)	Multicentre registry, 1,603 TAVI pts with stable CAD	PCI before vs concomitant vs after TAVI	2-yr mortality: PCI after TAVI 6.8% vs before 20.1% vs concomitant 20.6% ($p < 0.001$)	Timing matters: post-TAVI PCI may be safest; observational evidence only
Meta-analyses 2023–24 (JCR Review 2024)	Pooled data ($\sim 15,000$ – $60,000$ TAVI pts with CAD)	Mixed PCI vs conservative approaches	No mortality benefit for routine PCI; ↑ bleeding/AKI when done pre-TAVI or concomitant	Supports individualized CT-guided approach and $\geq 90\%$ stenosis threshold (ESC 2025)

Ongoing and Upcoming RCT on PCI in TAVI

Omission of invasive coronary angiography should be considered in TAVI candidates, if procedural planning CT angiography is of sufficient quality to rule out significant CAD.

IIa **B**

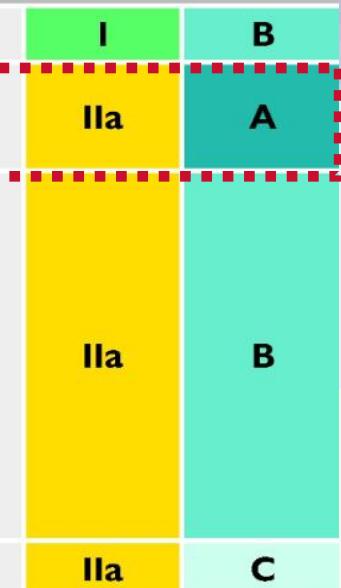
PCI should be considered in patients with a primary indication to undergo TAVI and $\geq 90\%$ coronary artery stenosis in segments with a reference diameter ≥ 2.5 mm.

IIa **B**

Trial	Design / Population	Intervention	Primary Endpoint / Status	Estimated Completion
PRO-TAVI (NCT05252964)	Randomized, multicentre; severe AS + stable CAD	Deferred vs routine PCI before TAVI	Non-inferiority for death/MI/stroke at 1 yr	Expected 2026
OPTIMAL-TAVI (NCT04310046)	Randomized; severe AS + CAD (any risk)	PCI before vs after TAVI	Composite of death, MI, or HF rehospitalization	Ongoing – Results 2025–26
EASY-TAVI PCI Timing Study (planned)	Pragmatic RCT; moderate CAD TAVI candidates	Concomitant vs staged PCI	Procedural complications and 1-yr MACE	Recruiting 2025
NOTION-3 Extension	Extension of NOTION-3 (455 pts)	PCI + TAVI vs TAVI alone	Long-term MACE, 5-yr durability data	Expected 2027

Management of asymptomatic severe aortic stenosis

Asymptomatic patients with severe aortic stenosis

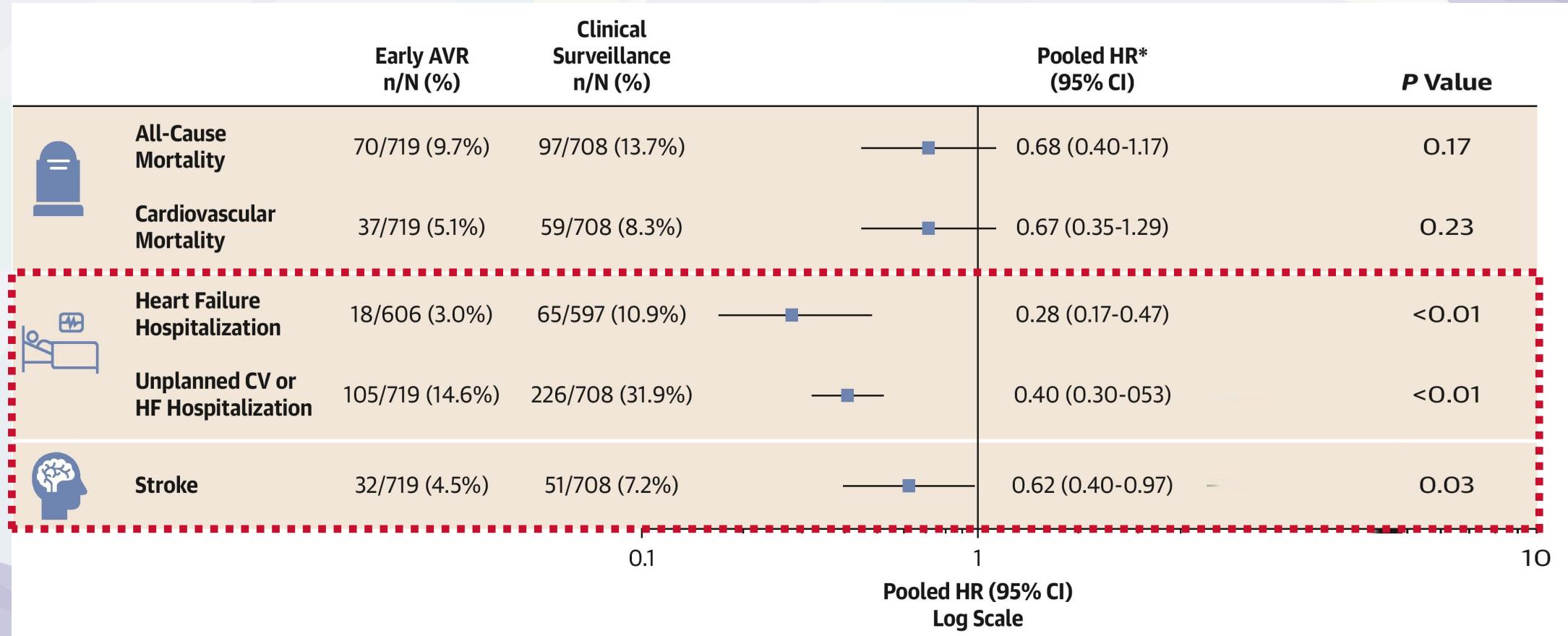

Intervention is recommended in asymptomatic patients with severe AS and LVEF <50% without another cause. ^{14,354–359}

Intervention should be considered in asymptomatic patients (confirmed by a normal exercise test, if feasible) with severe, high-gradient AS and LVEF \geq 50% as an alternative to close active surveillance, if the procedural risk is low. ^{360–363,367,368}

Intervention should be considered in asymptomatic patients with severe AS and LVEF \geq 50% if the procedural risk is low and one of the following parameters is present:

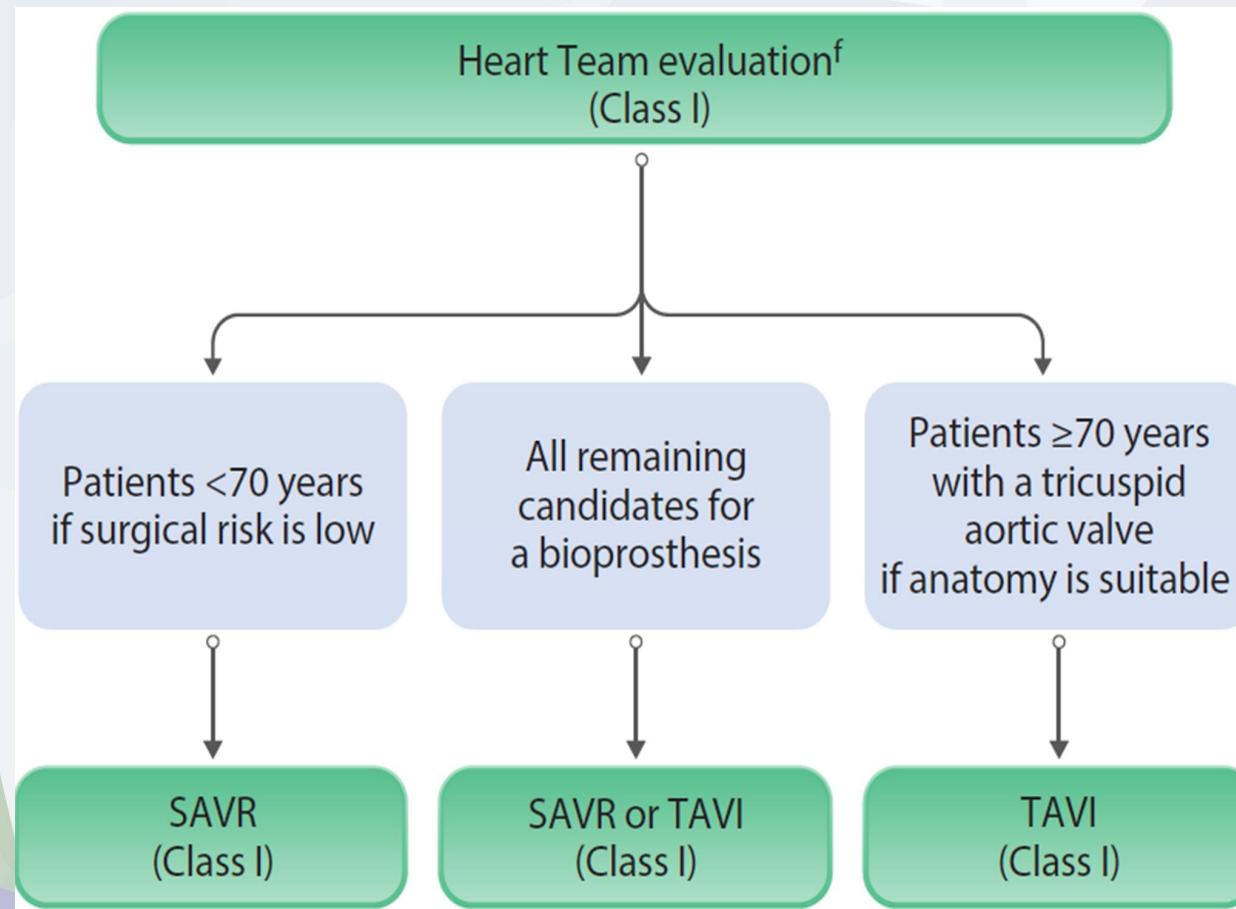
- Very severe AS (mean gradient \geq 60 mmHg or $V_{max} > 5.0$ m/s). ^{14,362,363,482–484}
- Severe valve calcification (ideally assessed by CCT) and V_{max} progression ≥ 0.3 m/s/year. ^{303,353,364}
- Markedly elevated BNP/NT-proBNP levels (more than three times age- and sex-corrected normal range, confirmed on repeated measurement without other explanation). ^{97,365}
- LVEF <55% without another cause. ^{14,354,356–359}

Intervention should be considered in asymptomatic patients with severe AS and a sustained fall in BP (>20 mmHg) during exercise testing.



New Class II A recommendation for AVR in asymptomatic patients with high-gradient AS and normal LVEF

Study	Design / Population	Intervention	Main Results (Asymptomatic only)	Implications
EARLY TAVR (NEJM 2024)	Multicenter RCT; n=901; asymptomatic severe AS	TAVR vs Clinical Surveillance	Primary endpoint (mortality, stroke, hospitalization: 12.1% vs 33.2% (HR 0.35); 25 % of patients crossed over to TAVR within 1 year.	Reduces CV events; no difference in strokes and all-cause mortality
EVOLVED (Lancet 2024)	RCT; n=224; asymptomatic severe AS with biomarkers or MRI fibrosis	Early AVR (mostly surgical) vs Watchful Waiting	No reduction in death/AS hospitalization (HR 0.92, NS)	Biomarkers alone insufficient for early intervention. Study was underpowered
RECOVERY (NEJM 2020)	Single-center RCT; n=145; asymptomatic very severe AS	Early Surgical AVR vs Watchful Waiting	8-year mortality: 10% vs 32% (HR 0.33). Mean follow-up 6 years	Supports early surgery in very severe AS
AVATAR (Circulation 2021)	Multicenter RCT; n=157; asymptomatic severe AS; negative exercise test	Early Surgical AVR vs Conservative	Composite: 15.2% vs 34.7% (HR 0.46). Mean follow-up 2.5 years	Benefit of early surgery with significant reduction of mortality and HF hospitalizations


Evidence behind the new asymptomatic AS recommendation

Meta-analysis of the EARLY TAVR, EVOLVED, RECOVERY, and AVATAR trials

1. Généreux P, et al. Aortic valve replacement vs clinical surveillance in asymptomatic severe aortic stenosis: A systematic review and meta-analysis. *J Am Coll Cardiol.* 2025;85(9):912-922.

New age cut-off to determine treatment strategy

TAVI recommended for patients ≥70 years-old regardless of surgical risk

- "TAVI is recommended as the primary treatment modality in elderly patients ≥70 years of age with a tricuspid aortic valve, if anatomy is suitable and transfemoral access is feasible."¹
- "SAVR remains the preferred treatment in patients <70 years of age if surgical risk is low."¹
- "SAVR or TAVI are recommended for all remaining candidates... according to Heart Team assessment."¹

TAVI is standard of care for patients ≥70 years with tricuspid AV stenosis (Class IA), and <70 years at increased risk for surgery.

TAVI is recommended in patients ≥70 years of age with tricuspid AV stenosis, if the anatomy is suitable.^{d 1-4,389-397,465,485,486}

SAVR is recommended in patients <70 years of age, if the surgical risk is low.^{e 413,429,487}

SAVR or TAVI are recommended for all remaining candidates for an aortic BHV according to Heart Team assessment.^{2,4,396,397,429,488-490}

I	A
I	B
I	B

Evidence behind the new age cut-off

DEDICATE trial¹

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Transcatheter or Surgical Treatment of Aortic-Valve Stenosis

S. Blankenberg, M. Seiffert, R. Vonthein, H. Baumgartner, S. Bleiziffer, M.A. Borger, Y.-H. Choi, P. Clemmensen, J. Cremer, M. Czerny, N. Diercks, I. Eitel, S. Ensminger, D. Frank, N. Frey, A. Hagendorff, C. Hagl, C. Hamm, U. Kappert, M. Karck, W.-K. Kim, I.R. König, M. Krane, U. Landmesser, A. Linke, L.S. Maier, S. Massberg, F.-J. Neumann, H. Reichenbäumer, T.K. Rudolph, C. Schmid, H. Thiele, R. Twerenbold, T. Walther, D. Westermann, E. Xhepa, A. Ziegler, and V. Falk, for the DEDICATE-DZH6 Trial Investigators*

- Mean age **74 years**
- **TAVI noninferior to surgery** for the primary endpoint of death or stroke at 1 year

NOTION-2 trial²

ESC European Society of Cardiology European Heart Journal (2024) 45, 3804–3814
https://doi.org/10.1093/eurheartj/ejac331

FAST TRACK - CLINICAL RESEARCH

Valvular heart disease

Transcatheter aortic valve implantation in low-risk tricuspid or bicuspid aortic stenosis: the NOTION-2 trial

Troels Højsgaard Jørgensen ¹, Hans Gustav Hørsted Thyregod¹, Mikko Savontaus², Yannick Willemen ³, Øyvind Bleie³, Marianne Tang ⁴, Matti Niemela⁵, Oskar Angerås⁶, Ingibjörg J. Guðmundsdóttir⁷, Ulrik Sartipy⁸, Hanna Dagnægaard⁹, Mikha Laine ⁹, Andreas Rück⁸, Jarkko Piuhola⁵, Petur Petrusson⁶, Evald H. Christiansen¹, Markus Malmberg ², Peter Skov Olsen¹, Rune Haaverstad ¹⁰, Lars Sondergaard¹⁰, and Ole De Backer ^{1,11}*, for the NOTION-2 Investigators¹

- Mean age **71 years**
- **Similar rate of the primary endpoint of death, stroke, or rehospitalization at 1 year with TAVI vs. surgery**

PARTNER 3 trial³

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients

M.J. Mack, M.B. Leon, V.H. Thourani, R. Makkar, S.K. Kodali, M. Russo, S.R. Kapadia, S.C. Malaisrie, D.J. Cohen, P. Pibarot, J. Leipsic, R.T. Hahn, P. Blanke, M.R. Williams, J.M. McCabe, D.L. Brown, V. Babaliaros, S. Goldman, W.Y. Szeto, P. Genereux, A. Pershad, S.J. Pocock, M.C. Alu, J.G. Webb, and C.R. Smith, for the PARTNER 3 Investigators*

- Mean age **73 years**
- **TAVI superior to surgery for the primary endpoint of death, stroke, or rehospitalization at 1 year**

Evolut Low Risk trial⁴

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients

Jeffrey J. Popma, M.D., G. Michael Deeb, M.D., Steven J. Yakubov, M.D., Mubashir Mumtaz, M.D., Hemal Gada, M.D., Daniel O'Hair, M.D., Tanvir Bajwa, M.D., John C. Heiser, M.D., William Merhi, D.O., Neal S. Kleiman, M.D., Judah Askew, M.D., Paul Sorajja, M.D., Joshua Rovin, M.D., Stanley J. Chetcuti, M.D., David H. Adams, M.D., Paul S. Teirstein, M.D., George L. Zorn III, M.D., John K. Forrest, M.D., Didier Tchétché, M.D., Jon Resar, M.D., Antony Walton, M.D., Nicolo Piazza, M.D., Ph.D., Basel Ramlawi, M.D., Newell Robinson, M.D., George Petrossian, M.D., Thomas G. Gleason, M.D., Jae K. Oh, M.D., Michael J. Boulware, Ph.D., Hongyan Qiao, Ph.D., Andrew S. Mugglin, Ph.D., and Michael J. Reardon, M.D., for the Evolut Low Risk Trial Investigators*

- Mean age **74 years**
- **TAVI noninferior to surgery for the primary endpoint of death and disabling stroke at 2 years**

1. Blankenberg S, et al. Transcatheter or surgical treatment of aortic valve stenosis. *N Engl J Med*. 2024;390(17):1572–1583.
2. Jørgensen TH, et al. Transcatheter aortic valve implantation in low-risk tricuspid or bicuspid aortic stenosis: the NOTION-2 trial. *Eur Heart J*. 2024;45(37):3804–3814.
3. Mack MJ, et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. *N Engl J Med*. 2019;380(18):1695–1705.
4. Popma JJ, et al. Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. *N Engl J Med*. 2019;380(18):1706–1715

New recommendation for bicuspid patients

TAVI may be considered for the treatment of severe BAV stenosis in patients at increased surgical risk, if the anatomy is suitable. [430-432,434,499-502](tel:430-432,434,499-502)

IIb

B

"SAVR remains the primary mode of treatment for stenotic BAV, particularly if patients are young or have coexistent aortopathy or unfavourable valve morphology. TAVI may be considered in patients at increased surgical risk, if

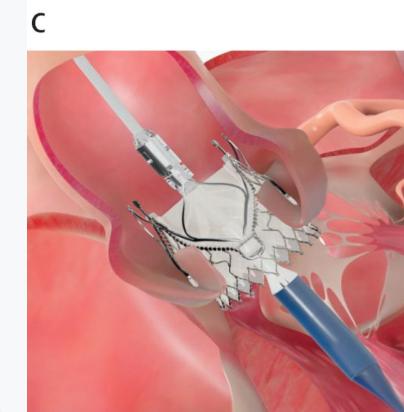
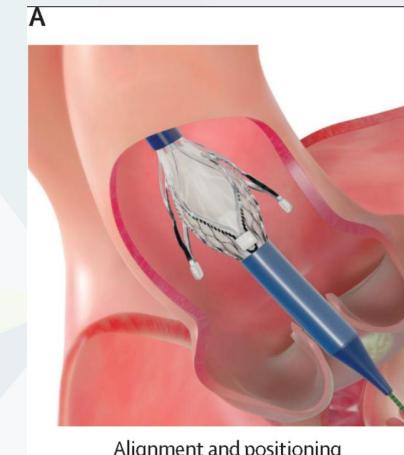
“1

Anatomical challenges and importance of correct sizing are highlighted

- “BAV anatomy adds complexity to TAVI because of asymmetric AV calcification and elliptical annular shape, as well as the lack of standardization of valve sizing.”¹
- “Heavy cusp calcification, particularly in conjunction with a calcified raphe, is associated with increased risk of aortic root injury, PVL, and mortality after TAVI. Data on TAVI in two-sinus BAV (Sievers type 0) are scarce.”¹

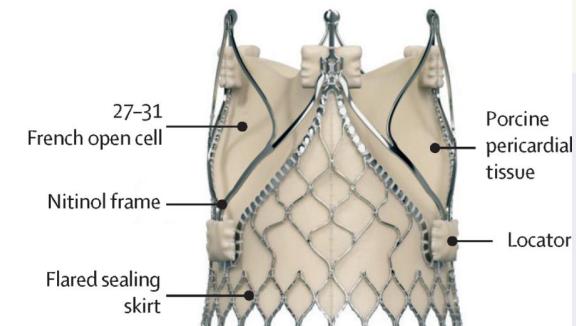
Evidence behind TAVI in BAV

Study	Design / Population	Intervention	Main Results (BAV only)	Implications
NOTION-2 (NEJM 2024)	RCT, low-risk ≤ 75 yrs (tricuspid + bicuspid subset ≈ 100 pts)	TAVI vs SAVR (mixed valves)	In BAV: primary composite 14.3% (TAVI) vs 3.9% (SAVR); HR ≈ 3.8 (wide CI)	First RCT including BAV; small subgroup, TAVI inferior in low-risk BAV
PARTNER 3 Bicuspid Registry (JACC 2022)	Prospective registry, low-risk BAV, matched to tricuspid cohort	Balloon-expandable (SAPIEN 3)	1-yr composite death/stroke/rehosp 10.9% vs 10.2% (NS); death 0.7%; stroke 2.1%	Low-risk BAV outcomes comparable to tricuspid AS in selected anatomy
Evolut Low-Risk BAV Study (JACC:CI 2024)	Prospective, single-arm, low-risk BAV	Self-expanding (Evolut R/PRO)	3-yr death/disabling stroke 4.1%; no mod/sev PVL; PPI 19%	Durable mid-term outcomes; supports feasibility in anatomically suitable BAV
STS/ACC TVT Registry (2021–23)	Large registry, real-world BAV vs tricuspid	Mixed platforms (mainly Evolut & SAPIEN 3)	30d death 0.9% vs 0.8%; 1y death 4.6% vs 6.6%; \uparrow PVL and PPI in BAV	Confirms acceptable outcomes; slightly \uparrow PVL/PPI risk vs tricuspid
Meta-analyses (2023–24)	Systematic reviews $> 60,000$ BAV cases	Mixed TAVI devices	No diff. mortality/stroke vs SAVR; \downarrow major bleeding; \uparrow PPI ($\sim 18\%$)	Aggregated evidence \rightarrow supports Class IIb B recommendation in ESC 2025

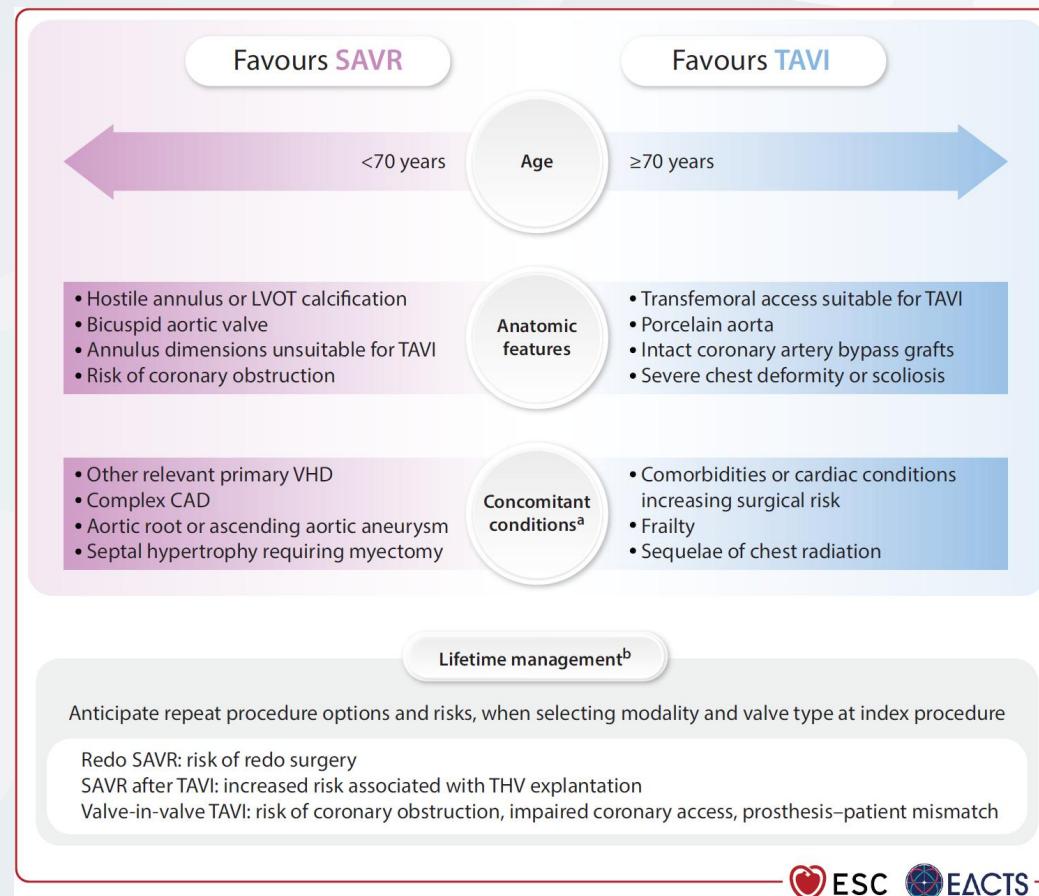


New recommendation for aortic regurgitation

TAVI may be considered for the treatment of severe AR in symptomatic patients ineligible for surgery according to the Heart Team, if the anatomy is suitable.

IIb


B

Study	Design / Population	Intervention	Main Results	Implications
ALIGN-AR (Lancet 2024)	Prospective, multicentre, single-arm; high-risk symptomatic native AR	Dedicated JenaValve Trilogy system	Device success 95–96%; 30 d composite safety 26.7%; 1 yr mortality 7.8%	First pivotal evidence supporting TAVI in pure AR using dedicated valve
ALIGN-AR Continued Access (2024–25)	Real-world expansion (~500 pts)	Same device (JenaValve Trilogy)	30 d mortality 1.6%; 1 yr ~8%; low PVL rates	Confirms feasibility and safety in larger population
Meta-analyses & Registries (2023–24)	22 studies, ~6,700 patients with native AR	Mixed TAVI platforms (non-dedicated and dedicated)	30 d mortality ≈8%; 1 yr ≈15%; PVL and embolization main issues	Support Class IIb B recommendation for high-risk AR patients



Perimeter-derived annulus diameter range (mm)	Annulus perimeter range (mm)	Sizing recommendations (CT scan)		
		2 mm	4 mm	6 mm
21.0–24.2	66–76	78	80	82
23.2–26.4	73–83	85	87	89
25.5–28.6	80–90	92	94	96

D Pacemaker 24%

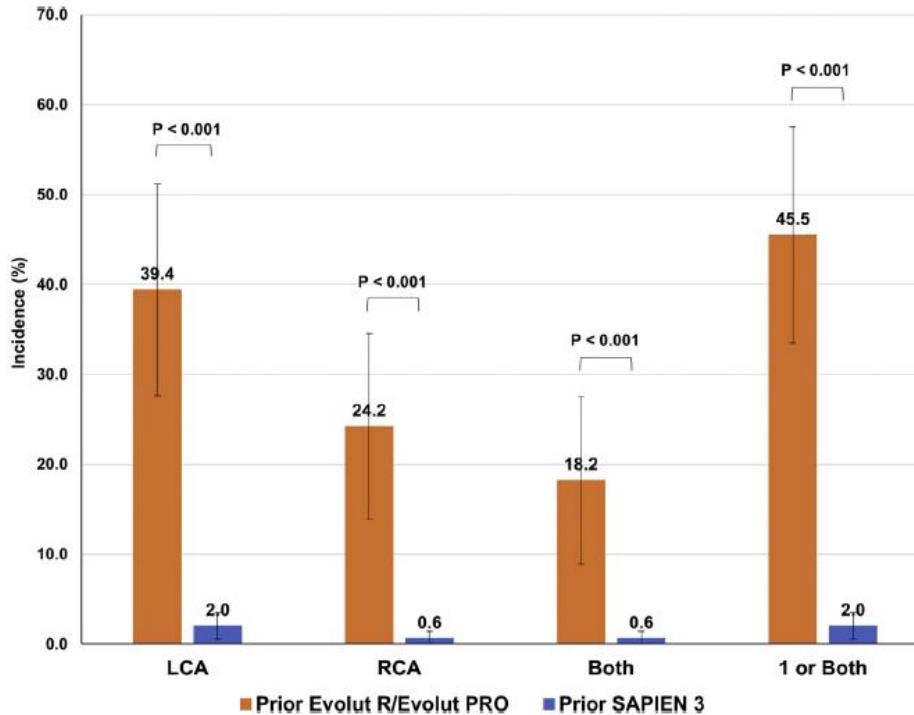
Lifetime management is a deciding factor

Lifetime management is now an important factor when deciding the therapy and prosthesis

- “Selection of the most appropriate mode of intervention should take into account clinical characteristics (age and estimated life expectancy, concomitant conditions), access and valve anatomy, and surgical risk, as well as repeat procedure options and risks (lifetime management).”¹
- “Decision-making concerning the mode of intervention and type of prosthesis needs to integrate expected valve durability, and the potential risks of future reinterventions.”¹

It is recommended that the mode of intervention is based on Heart Team assessment of individual clinical, anatomical, and procedural characteristics, incorporating lifetime management considerations and estimated life expectancy.

I


C

Evidence behind lifetime management

Higher risk of sinus sequestration during TAV- in-TAV with supra-annular valves with a high neo-skirt

RESOLVE registry

FIGURE 3 CT-Identified Risk of Sinus Sequestration in Redo TAVR in Evolut R/Evolut PRO and SAPIEN 3

CT-identified risk of sinus sequestration in redo TAVR in prior Evolut R/Evolut PRO and prior SAPIEN 3 are shown. Abbreviations as in Figure 1.

- Risk of sinus sequestration at 1 or both coronary arteries: 45.5% with Evolut R/Evolut PRO vs. 2.0% with the SAPIEN 3 platform ($p < 0.001$)

- “The risk of sinus sequestration at the time of TAV-in-TAV implantation is particularly increased in supra-annular valves with a high neo-skirt

Antithrombotic therapy

Transcatheter aortic valve implantation without indication for oral anticoagulation

DAPT is not recommended to prevent thrombosis after TAVI, unless there is a clear indication.

III

B

Study	Design / Population	Intervention	Main Findings	Limitations	Implications
POPular-TAVI Cohort A (NEJM 2020)	RCT; 331 TAVI patients without OAC indication	SAPT (aspirin) vs DAPT (aspirin + clopidogrel)	Bleeding 15.1% vs 26.6%; no difference in death/MI/stroke	Moderate sample; 12-month follow-up; selected low-risk population	SAPT safer; no ischemic advantage of DAPT
ARTE Trial (JACC CI 2017)	RCT; 222 post-TAVI patients	Aspirin vs Aspirin + Clopidogrel	More bleeding with DAPT; no ischemic benefit	Single-center; older valve platforms; limited generalizability	Supports avoiding routine DAPT
Meta-analysis (Sanz-Sánchez 2021)	4 RCTs; 1,086 TAVI patients without OAC	SAPT vs DAPT	Major bleeding ↓ (OR 0.44); no diff. in death/MI/stroke	Heterogeneous RCTs; study-level data; bleeding-driven outcomes	Strong pooled evidence for SAPT

Conclusions

- **Heart Teams** have a central role in decision-making and the **patient's preference** is at the center.
- **CAD strategy simplified** (CT-first – **Class IIa**, selective PCI, **Class IIa**)
- AVR is recommended in **asymptomatic patients** with high-gradient AS and normal LVEF (**Class IIa**)
- TAVI is standard of care for patients ≥ 70 years with tricuspid AV stenosis (**Class IA**)
- **Lifetime management** is now an important factor when deciding the therapy and prosthesis
- TAVI may be considered for **bicuspid patients** at increased surgical risk (**Class IIb**)
- TAVI may be considered for severe aortic regurgitation in symptomatic patients ineligible for surgery if the anatomy is suitable (**Class IIb**)
- SAPT standard after TAVI; **no routine DAPT/OAC** (**Class IIIb**)